ATENÇÃO: Esta página foi traduzida automaticamente pelo Google Translate. Isto pode ter consequências inesperadas no conteúdo apresentado e, portanto, não nos responsabilizamos pelo resultado dessa tradução automática.


ATTENTION: this page has been automatically translated by Google Translate. This can have unexpected consequences and, therefore, we do not take responsibility for the result of that automatic translation.

menu
menu close
MestradoMestrado em Gestão de Empresas

A study on the prediction of flight delays of a private aviation airline

Autor
Fernandes, Nuno Óscar Gomes
Data de publicação
26 Mar 2018
Acesso
Acesso livre
Palavras-chave
Modelos de Previsão
Gestão de empresas
Empresa privada
Machine learning
Sistemas de Apoio à Decisão
Predição
Prediction
Indústria aeronáutica
Air transportation delays
Private aviation
Atrasos de voo
Aprendizagem de máquina
Aviação privada
Resumo
PT
O atraso de voo é um indicador fulcral em toda a indútria de transporte aéreo e esses atrasos têm consequências económicas e financeiras para passageiros e companhias aéras. Reconhecê- los através de predição poderá melhorar decisões estratégicas e operacionais. O objectivo é utilizar técnicas de aprendizagem de máquina (machine learning) para prever um eterno desafio da aviação: atraso de voo à partida, utilizando dados de uma companhia aérea privada. O conhecimento do contexto do negócio e dos dados adquiridos, num segmento singular da aviação, são revistos à luz das literatura vigente e a preparação dos dados, a modelização e respectiva avaliação são conduzidos de modo a contribuir para uma ferramenta de apoio à decisão no contexto da aviação privada. Os resultados obtidos revelam quais dos algoritmos utilizados demonstra uma melhor performance e quais as variáveis dos dados obtidos que mais contribuem para o modelo e consequentemente para o atraso à partida.
EN
The delay is a crucial performance indicator of any transportation system, and flight delays cause financial and economic consequences to passengers and airlines. Hence, recognizing them through prediction may improve marketing decisions. The goal is to use machine learning techniques to predict an aviation challenge: flight delay above 15 minutes on departure of a private airline. Business and data understanding of this particular segment of aviation are revised against literature revision, and data preparation, modelling and evaluation are addressed to lead towards a model that may contribute as support for decision-making in a private aviation environment. The results show us which algorithms performed better and what variables contribute the most for the model, thereafter delay on departure.

Relacionadas