Título
Classificação automática de registos eletrónicos médicos por diagnóstico
Autor
Barros, Ana Rita Amaro
Resumo
pt
A crescente implementação de sistemas de registos eletrônicos médicos (REM’s) nos
Hospitais, com vista a apoiar o atendimento individual dos pacientes, está a provocar um
aumento do processamento e armazenamento dos dados clínicos diariamente. Estes registos
contêm uma fonte infindável de informação clínica, no entanto o facto de não haver estrutura
no texto produzido pelos médicos e o facto das informações introduzidas divergirem de
paciente para paciente e de especialidade médica para especialidade médica, dificulta o
aproveitamento destes dados. Outra dificuldade que existe na análise deste tipo de dados é
conseguir criar um sistema capaz de extrair informação minuciosa presente nos REM’s, de
forma a ajudar os profissionais de saúde a reduzir a taxa de erro de diagnóstico, prevendo o
tipo de doença do paciente. Atualmente, para superar este desafio os hospitais realizam este
processo manualmente, no entanto este processo é longo e está suscetível a erros. Esta
dissertação pretende propor uma solução para este problema, ao utilizar técnicas de
Processamento de Linguagem Natural e de Aprendizagem Automática, de forma a permitir
um sistema que possibilite a extração de conhecimento clínico e respetiva classificação do
REM por tipo de doença/ diagnóstico, de uma forma automática. Este sistema foi
desenvolvido em língua portuguesa, visto que todos os sistemas médicos de extração de
conhecimento existentes são desenvolvidos para língua inglesa. Este cenário visa ajudar na
evolução do aproveitamento das informações contidas nos REM’s e, consequentemente, visa
contribuir para o crescimento deste tipo de sistemas dentro do hospital português envolvido
nesta dissertação.
en
The growing implementation of electronic medical record (EMR’s) systems in Hospitals, to
support individual patient care, is causing an increase in the processing and storage of clinical
data daily. These records contain an endless source of clinical information, however, the fact
that there is no structure in the text produced by doctors and the fact that the information
entered differ from patient to patient and from medical speciality to medical speciality, makes
it difficult to use these data. Another difficulty that exists in the analysis of this type of data is
to be able to create a system capable of extracting detailed information present in the EMR's,
in order to help health professionals to reduce the error rate of diagnosis, predicting the type
of disease of the patient. Currently, to overcome this challenge, hospitals carry out this process
manually, however, this process is long and susceptible to errors. This dissertation intends to
propose a solution to this problem, using techniques of Natural Language Processing and
Machine Learning, in order to allow a system that allows the extraction of clinical knowledge
and respective classification of EMR by type of disease/diagnosis, from an automatically. This
system was developed in Portuguese language since all existing medical knowledge
extraction systems are developed for English. This scenario aims to help in the evolution of
the use of the information contained in the EMR’s and, consequently, aims to contribute to the
growth of this type of systems within the Portuguese hospital involved in this dissertation.