Título
Melhorar a sustentabilidade da irrigação usando machine learning
Autor
Raimundo, Francisco José dos Santos Negrier
Resumo
pt
Hoje em dia é de grande importância pouparmos os poucos recursos que ainda existem
no planeta Terra, sendo que a água tem um papel fundamental na nossa sobrevivência.
Com o desenvolvimento de novas tecnologias, podemos usar a mesmas a nosso favor
de forma a contrariar o consumo e o desperdício da água. Recorrendo à internet of
things, inteligência artificial e machine learning podemos desenvolver sistemas inovadores
e completos que visam efetuar, por um lado, uma poupança do consumo de água e, por
outro a adequar a irrigação certa em tempo real e de forma adaptada às necessidades, no
sector da agricultura.
Esta dissertação apresenta uma proposta de solução para o desenvolvimento de um
sistema recorrendo a mecanismos de machine learning, capaz de fazer a previsão de dados
meteorológicos futuros e, através da análise dos mesmos de indicar se há necessidade
de rega, indicando a hora e a duração da rega. Ao longo do sistema foram testados
vários algoritmos de machine learning, sendo que o que apresentou melhores resultados
foi o algoritmo floresta aleatória. Com o recurso a este algoritmo foi possível gerar uma
redução do tempo de rega na ordem dos 72%.
Através deste trabalho foi possível mostrar que a utilização de um sistema que é suportado
em machine learning permite reduzir a quantidade de água desperdiçada, quando
comparado com sistemas sem a utilização de inteligencia artificial.
en
Nowadays, it is very important that we save the few resources that still exist on planet
Earth, and water has a fundamental role in our survival. With the development of new
technologies, we can use them to our advantage to counteract the consumption and waste
of water. Using the internet of things, artificial intelligence and machine learning we can
develop innovative and complete systems that aim to carry out, on the one hand, a saving
of water consumption and, on the other hand, to adapt the right irrigation in real time
and in a way adapted to the needs, in the agriculture sector.
This dissertation presents a proposal for a solution and development for a system
using machine learning mechanisms, capable of forecasting future meteorological data
and, through their analysis, indicate whether there is a need for irrigation, indicating
the time and duration of the irrigation. Throughout the system, several machine learning
algorithms were tested, and the one with the best results was the random forest algorithm.
With the use of this algorithm it was possible to generate a reduction of the watering time
in the order of 72%.
Through this work it was possible to show that the use of a system that is supported in
machine learning we can reduce the amount of wasted water compared to a conventional
method without the use of any intelligence mechanism.