Título
Next generation >200 Gb/s multicore fiber short-reach networks employing machine learning
Autor
Piedade, Derick Augusto Évora
Resumo
pt
Este trabalho propõe e avalia o uso de técnicas de machine learning (ML) em sistemas de curto alcance com ritmo binário superior a 200 Gb/s utilizando receptores Kramers-Kronig (KK) e fibras multinúcleo (MCF). Os sistemas de curto alcance usualmente encontrados em conexões
intra-data centers (DC) exigem receptores de deteção direta (DD) de baixo custo. Os receptores KK permitem a combinação de sistemas de modulação de maior ordem, tais como o 16-QAM, usado em sistemas coerentes, com o baixo custo dos receptores DD. Portanto, o uso de
receptores KK permite melhorar o ritmo binário e eficiência espectral e manter a eficiência de custo dos sistemas DD, o que é importante em DC. O uso de fibras multinúcleo permite o aumento da capacidade do sistema, bem como a densidade de cabos. No entanto, o uso de MCF
introduz uma distorção adicional no sistema conhecida como inter-core crosstalk (ICXT). Para mitigar os efeitos do ICXT aleatório, são propostas e avaliadas técnicas de ML de baixa complexidade como k-means clustering, k nearest neighbor (KNN) e rede neuronais artificiais
(ANN).
O desempenho associado à utilização de algoritmos de ML (k-means, KNN e duas redes neuronais do tipo feedforward (FNN): uma para estimação e outra para classificação), é avaliado e comparado com o desempenho do sistema obtido sem o uso de ML. A utilização de FNN para estimação e classificação conduziram a uma melhoria significativa no desempenho do sistema, mitigando o impacto do ICXT no sinal recebido. Isso é alcançado com o uso de uma rede neuronal com uma arquitetura muito simples contendo quatro entradas e 10 neurónios na camada escondida. Foi demonstrado que os algoritmos k-means e KNN não proporcionam melhoria de desempenho em comparação com o sistema sem o uso de ML. Essas conclusões são válidas para sistemas DD de curto alcance baseados em MCF com o produto entre o skew (atraso relativo entre os núcleos) e o ritmo de símbolos muito menor que um (skew x symbol rate « 1). Com o uso das ANNs, o sistema apresenta uma melhoria de aproximadamente 12 dB na probabilidade de indisponibilidade quando comparado com o sistema sem o uso de ML.
Para o limite de BER de 10−1.8 , e comparado com o sistema padrão sem o uso de técnicas de ML, o sistema com o uso de ANN mostra uma melhoria na potência óptica recebida de quase 3 dB e uma melhoria no nível de ICXT de aproximadamente 9 dB em relação ao BER médio.
en
This work proposes and evaluates the use of machine learning (ML) techniques on >200 Gb/s
short-reach systems employing weakly coupled multicore fiber (MCF) and Kramers-Kronig
(KK) receivers. The short-reach systems commonly found in intra data centers (DC)
connections demand low cost-efficient direct detection receivers (DD). The KK receivers allow
the combination of higher modulation order, such as 16-QAM used in coherent systems, with
the low complexity and low cost of DD. Thus, the use of KK receivers allows to increase the
bit rate and spectral efficiency while maintaining the cost of DD systems as this is an important
requirement in DC. The use of MCF allows to increase the system capacity as well as the system
cable density, although the use of MCF induces additional distortion, known as inter-core
crosstalk (ICXT), to the system. Thus, low complexity ML techniques such as k-means
clustering, k nearest neighbor (KNN) and artificial neural network (ANN) (estimation
feedforward neural network (FNN) and classification feedforward neural network) are
proposed to mitigate the effects of random ICXT.
The performance improvement provided by the k-means clustering, KNN and the two types
of FNN techniques is assessed and compared with the system performance obtained without
the use of ML. The use of estimation and classification FNN prove to significantly improve the
system performance by mitigating the impact of the ICXT on the received signal. This is
achieved by employing only 10 neurons in the hidden layer and four input features. It has been
shown that k-means or KNN techniques do not provide performance improvement compared
to the system without using ML. These conclusions are valid for direct detection MCF-based
short-reach systems with the product between the skew (relative time delay between cores) and
the symbol rate much lower than one (skew x symbol rate « 1). By employing the proposed
ANNs, the system shows an improvement of approximately 12 dB on the ICXT level, for the
same outage probability when comparing with the system without the use of ML. For the BER
threshold of 10−1.8
and compared with the standard system operating without employing ML
techniques, the system operating with the proposed ANNs show a received optical power
improvement of almost 3 dB and a ICXT level improvement of approximately 9 dB when the
mean BER is analized.