Teses e dissertações

Mestrado
Matemática Financeira
Título

Machine learning: Challenges and opportunities on credit risk

Autor
Costa, Patrícia Alexandra Guerreiro
Resumo
pt
O constante desafio na antecipação do risco de incumprimento por parte dos tomadores de crédito, levou a que as instituições financeiras desenvolvessem técnicas e modelos de forma a melhorar a sua monitorização do risco de crédito, e antever o quão provável será para determinados clientes entrar em incumprimento, assim como o quão provável será para outros de cumprirem com as suas obrigações financeiras. Portanto, interessa averiguar como as instituições financeiras podem antecipar esta ocorrência beneficiando de algoritmos de Machine Learning. A presente dissertação pretende demonstrar o poder dos algoritmos de Machine Learning na análise de risco de crédito, com foco no processo de construção dos modelos, treinando-os e testando os dados, e apresentar as oportunidades e os desafios de Machine Learning que ainda estão em aberto para desenvolver futuros estudos. Para esse propósito, apresentamos dois algoritmos de classificação de Machine Learning: as Árvores de Decisão e a Regressão Logística. Adicionalmente, também se apresenta os resultados numéricos obtidos entre várias comparações desses algoritmos que foram programados e corridos em Python, utilizando a aplicação Jupyter Notebook. Os dados da amostra inicial, constituída por 850 observações, contêm detalhes de crédito sobre os tomadores de empréstimos nos Estados Unidos da América, sendo os dados de livre acesso e uitilização. Para verificar a execução e a performance do modelo, entre Regressão Logística e Árvores de Decisão, usamos medidas como o AUC, precisão e F1-score.
en
The constant challenge in anticipating the risk of default by borrowers has led financial institutions to develop techniques and models to improve their credit risk monitoring, and to predict how likely it is for certain customers to default on a loan, as well as how likely it is for others to meet their financial obligations. Thus, it is interesting to investigate how financial institutions can anticipate this occurrence using Machine Learning algorithms. This dissertation aims to demonstrate the power of Machine Learning algorithms in credit risk analysis, focusing on building the models, training them, and testing the data, and presenting the opportunities and challenges of Machine Learning that are still open to developing future studies. For this purpose, we present two Machine Learning classification algorithms: Decision Trees and Logistic Regression. In addition, numerical results obtained from various comparisons of these algorithms, which were programmed and ran in Python using the Jupyter Notebook application, are also presented. The initial sample data, consisting of 850 observations, contained credit details about borrowers in the United States of America, and is freely available data. To check the model execution and performance, between Logistic Regression and Decision Trees, we used measures such as AUC, precision and F1-score.

Data

27-jan-2023

Palavras-chave

Machine learning
Árvore de decisão -- Decision tree
Data mining --
Risco de crédito -- Credit risk
Linear and logistic regression
Random forest
Regressão linear e logística
Floresta aleatória

Acesso

Acesso livre

Ver no repositório  
Voltar ao topo