Teses e dissertações

Mestrado
Engenharia Informática
Título

Big data analytics applied to sensor data of engeneering structures: predictive methods

Autor
Caçador, Filipe Galvão Chambel
Resumo
pt
Modelos preditivos são instrumentos fundamentais para a análise da segurança de barragens. São importantes para obter conclusões acerca da segurança estrutural destas. Os dados utilizados nos modelos preditivos, são obtidos através de sensores que se encontram embutidos nas estruturas. Apesar dos algoritmos preditivos serem ferramentas poderosas para a análise e previsão, outras técnicas de Machine Learning e modelos estatísticos, como as redes neuronais, têm sido desenvolvidas e utilizadas nestas áreas ao longo dos anos. Devido às diferentes formas que a monitorização destas estruturas é feita, o foco está em melhorar os métodos existentes, através de uma análise comparativa. Este trabalho tem como finalidade o desenvolvimento de uma metodologia que compare os diferentes algoritmos preditivos, como a Multiple Linear Regression, a Ridge Regression, a Principal Component Regression e as Redes Neuronais, bem como a aplicação de diferentes técnicas de separação de dados. Esta metodologia será aplicada a um caso de estudo, com a finalidade de determinar qual ou quais as combinações de variáveis que obtêm o melhor desempenho na previsão do seu comportamento.
en
Predictive models are fundamental instruments for providing dam safety analysis. They are important tools to retrieve conclusions about the structural safety of these dams. The data for these predictive models is gathered through sensors embedded within these structures. Even though predictive models are powerful tools for analysis and prediction, other machine learning and statistical models, like neural networks, have been developed over the years. Due to the many ways dam safety analyses is performed, the focus is to improve the existing methods by comparing them with each other. This work is focused on developing the methodology that compares different predictive models, like the Multiple Linear Regression Model, the Ridge Regression Model, the Principal Component Regression Model and Neural Networks, as well as comparing different re-sampling techniques for separating the data. This methodology is applied to a case study, with the purpose of finding which combinations of input variables provide the highest accuracy for predicting the behavior of these structures.

Data

02-abr-2018

Palavras-chave

Data mining
Big data
Machine learning
Redes neuronais
Statistical analysis
Predictive analytics
Métodos de previsão
Dam monitoring
Modelos estatísticos

Acesso

Acesso livre

Ver no repositório  
Voltar ao topo