ATENÇÃO: Esta página foi traduzida automaticamente pelo Google Translate. Isto pode ter consequências inesperadas no conteúdo apresentado e, portanto, não nos responsabilizamos pelo resultado dessa tradução automática.


ATTENTION: this page has been automatically translated by Google Translate. This can have unexpected consequences and, therefore, we do not take responsibility for the result of that automatic translation.

menu
menu close
MestradoMestrado em Engenharia Informática

Electricity price forecasting utilizing machine learning in MIBEL

Autor
Januário, João Filipe Ferreira
Data de publicação
27 Mar 2020
Acesso
Acesso livre
Palavras-chave
Electricity
Preços
Machine learning
Métodos de previsão
Eletricidade
Prediction
Clearing market
Input variables
Resumo
PT
EN
Short term electricity price forecasts have become increasingly important in the last few decades due to the rise of more competitive electricity markets throughout the globe. Accurate forecasts are now essential for market players to maximize their profits and hedge against risk, hence various forecasting methodologies have been applied to electricity price forecasting in the last few decades. This dissertation explores the main methodologies and how accurately can three popular machine learning models, SVR LSTM and XGBoost, predict prices in the Iberian market of electricity. Additionally, a study on input variables and their relationship with the final price is made.

Relacionadas