Título
Streamlining code smells: Using collective intelligence and visualization
Autor
Reis, José Vicente Pereira dos
Resumo
pt
Contexto. Os cheiros de código são a principal causa de dívida técnica (technical debt), como tal, devem ser detectados e removidos. Os cheiros de código já foram há muito tempo catalogados juntamente com as correspondentes soluções mitigadoras chamadas operações de refabricação (refactoring). No entanto, embora estas últimas sejam suportadas nas IDEs
actuais (por exemplo, Eclipse), a deteção de cheiros de código têm ainda muitas limitações. Os investigadores argumentam que a subjectividade do processo de deteção de cheiros de código é um dos principais obstáculo à mitigação do problema da qualidade do código.
Objectivo. Esta tese apresenta uma nova abordagem à detecção de cheiros de código, a que chamámos CrowdSmelling, e os resultados de uma experiência de validação para esta abordagem. A nossa abordagem de CrowdSmelling baseia-se em técnicas de aprendizagem automática supervisionada, onde a sabedoria da multidão (dos programadores de software) é
utilizada para calibrar colectivamente algoritmos de detecção de cheiros de código, diminuindo assim a questão da subjectividade.
Método. Em três anos consecutivos, no âmbito da Unidade Curricular de Engenharia de Software, uma "multidão", num total de cerca de uma centena de equipas, com uma média de três membros cada, classificou a presença de 3 cheiros de código (Long Method, God Class, and Feature Envy) em código fonte Java. Estas classificações foram a base dos oráculos utilizados para o treino de seis algoritmos de aprendizagem automática. Mais de cem modelos foram gerados e avaliados para determinar quais os algoritmos de aprendizagem de máquinas com melhor desempenho na detecção de cada um dos cheiros de código acima mencionados.
Resultados. Foram obtidos bons desempenhos na detecção do God Class (ROC=0,896 para Naive Bayes) e na detecção do Long Method (ROC=0,870 para AdaBoostM1), mas muito mais baixos para Feature Envy (ROC=0,570 para Random Forrest).
Conclusões. Os resultados obtidos sugerem que o Crowdsmelling é uma abordagem viável para a detecção de cheiros de código, mas são necessárias mais experiências de validação para cobrir mais cheiros de código e para aumentar a validade externa.
en
Context. Code smells are seen as major source of technical debt and, as such, should be detected and removed. Code smells have long been catalogued with corresponding mitigating solutions called refactoring operations. However, while the latter are supported in current IDEs (e.g., Eclipse), code smells detection scaffolding has still many limitations. Researchers argue that the subjectiveness of the code smells detection process is a major hindrance to mitigate the problem of smells-infected code.
Objective. This thesis presents a new approach to code smells detection that we have called CrowdSmelling and the results of a validation experiment for this approach. The latter is based on supervised machine learning techniques, where the wisdom of the crowd (of software developers) is used to collectively calibrate code smells detection algorithms, thereby lessening the subjectivity issue.
Method. In the context of three consecutive years of a Software Engineering course, a total “crowd” of around a hundred teams, with an average of three members each, classified the presence of 3 code smells (Long Method, God Class, and Feature Envy) in Java source code. These classifications were the basis of the oracles used for training six machine learning algorithms.
Over one hundred models were generated and evaluated to determine which machine learning algorithms had the best performance in detecting each of the aforementioned code smells.
Results. Good performances were obtained for God Class detection (ROC=0.896 for Naive Bayes) and Long Method detection (ROC=0.870 for AdaBoostM1), but much lower for Feature Envy (ROC=0.570 for Random Forrest).
Conclusions. Obtained results suggest that Crowdsmelling is a feasible approach for the detection of code smells, but further validation experiments are required to cover more code smells and to increase external validity