Título
Hotel revenue management: Usingdata science to predict booking cancellations
Autor
António, Nuno Miguel da Conceição
Resumo
pt
Na indústria hoteleira, a precisão da previsão da procura é altamente impactada pelos
cancelamentos de reservas. Na tentativa de mitigar as consequências dos cancelamentos, os
hotéis tendem a implementar políticas de cancelamento restritivas e táticas de "overbooking", o
que, por sua vez, reduz o número de reservas e a receita. Para combater a incerteza decorrente
dos cancelamentos, foram desenvolvidos modelos capazes de prever a probabilidade de cada
reserva vir a ser cancelada. Neste desenvolvimento foram utilizados dados de oito sistemas de
gestão de reservas de outros tantos hotéis, conjuntamente com dados de outras fontes (eventos,
feriados, preços/inventário "online", reputação social e clima). Apesar dos problemas de
desequilíbrio de classe de dados, desvio de conceito e variação de distribuição entre variáveis
ao longo do tempo, foi possível demonstrar que prever cancelamentos de reservas não é apenas
possível realizar, mas que é possível de fazer com elevada precisão. A elaboração dos modelos
ajudou ainda a compreender os fatores que influenciam o cancelamento. Para avaliar os modelos
em condições reais, foi desenvolvido um protótipo, o qual permitiu avaliar como um sistema
automatizado baseado em aprendizagem automática para prever os cancelamentos de reservas
pode ser integrado nos sistemas dos hotéis. Este protótipo permitiu ainda avaliar o desempenho
dos modelos num ambiente real, incluindo o seu impacto na operação. A implementação
possibilitou também compreender os ajustes a serem feitos aos modelos para que pudessem
efetivamente trabalhar num ambiente real, bem como fomentou a criação de uma nova medida
de avaliação de desempenho. O protótipo permitiu que os hoteleiros agissem sobre as reservas
identificadas e efetivamente diminuíssem os cancelamentos. Para além disso, os resultados
confirmaram que os modelos de previsão de cancelamento de reservas podem melhorar a
previsão de procura, permitindo que os hoteleiros compreendam melhor a sua procura líquida,
ou seja, a procura atual menos os cancelamentos previstos.
en
In the hotel industry, demand forecast accuracy is highly impacted by booking cancellations.
Trying to overcome loss, hotels tend to implement restrictive cancellation policies and employ
overbooking tactics which in turn reduces the number of bookings and reduces revenue. To tackle
the uncertainty arising from cancellations, models for the prediction of a booking's cancellation
were developed. Data from hotels' reservations systems was combined with data from other
sources (events, holidays, online prices/inventory, social reputation and weather). Despite data
class imbalance, concept drift, and dataset shift problems, it was possible to demonstrate that to
predict cancellations of bookings is not only possible but also accurate. Moreover, it helped to
better understand what the cancellation drivers can be. In order to assess the models under real
conditions, a prototype was developed for field tests allowing to evaluate how an automated
machine learning system that predicts booking’s cancellations could be integrated into hotels'
systems. The model's performance in a real environment was assessed, including the impact on
the business. The prototype implementation enable an understanding of adjustments to be made
in the models so that they could effectively work in a real environment, as well as fostered the
creation of a new measure of performance evaluation. The prototype enabled hoteliers to act
upon identified bookings and effectively decrease cancellations. Moreover, results confirmed that
booking cancellation prediction models can improve demand forecast, allowing hoteliers to
understand their net demand, i.e., current demand minus predicted cancellations.