Título
Criação de um programa de fidelidade baseado em análise de cluster em uma empresa de segurança privada
Autor
Sousa, Arthur Vale Franklin de
Resumo
pt
Este estudo teve como objetivo desenvolver um programa de fidelidade para os
clientes mais valiosos a partir de técnicas de agrupamento em um conjunto de dados de uma
empresa de segurança privada. O K-means foi utilizado como algoritmo não supervisionado de
aprendizagem automática a fim de segmentar os clientes. A métricas de avaliação da
performance que auxiliaram na comparação das diversas abordagens do algoritmo foi o
Sillouete coeficient. Como diferencial do estudo, além da métrica de avaliação, para testar as
hipóteses levantadas, foram utilizados questionários estratégicos com os decisores do negócio
objetivando uma criação integrada de um programa de fidelidade com os principais interessados
na fidelização e rentabilidade dos clientes. Como resultado, foram encontrados 3 grupos de
clientes que apresentaram um Silhoette coeficient ótimo para a criação de um programa de
fidelidade. O grupo de clientes a ser contemplado com um programa de fidelidade não foi o que
apresentou a melhor métrica do Silhoette coeficient. Os principais gestores do negócio elegeram
o grupo que, para eles, apresentavam uma maior eficiência na sua gestão. Com isto, o estudo
concluiu que a segmentação de clientes envolve não apenas a análises estatísticas de grupos de
usuários individuais, mas demanda também de entendimento de negócio e colaboração das
partes interessadas. Ainda, o presente estudo vai ao encontro dos resultados obtidos por outros
autores e mostra que empresas de segurança privada podem se beneficiar da criação de um
programa de fidelidade, porém ainda há caminho para novas investigações.
en
This study aims to create a loyalty program for the most valuable customers using
clustering techniques on a dataset from a private security company. K-means was employed as
an unsupervised machine learning algorithm to segment the customers. Performance evaluation
metrics, including the Silhouette coefficient, were utilized to compare various algorithmic
approaches. As a distinctive feature of this study, in addition to the evaluation metric, strategic
questionnaires were administered to business decision-makers to facilitate the integrated
development of a loyalty program with key stakeholders invested in customer retention and
profitability. The results show the existence of three customer clusters with an optimal
Silhouette coefficient for loyalty program development. Interestingly, the customer group to be
targeted for the loyalty program did not exhibit the highest Silhouette coefficient metric.
Business leaders selected the group they perceived as most efficient for program
implementation. Consequently, the study concludes that customer segmentation entails not only
statistical analyses of individual user groups but also requires a comprehensive understanding
of the business and collaboration with stakeholders. Furthermore, this study aligns with findings
from other authors, demonstrating that private security companies can benefit from
implementing a loyalty program, although avenues for further investigation remain.