Título
Reading the news through its structure: New hybrid connectivity based approaches
Autor
Rodrigues, David Manuel de Sousa
Resumo
pt
Neste trabalho resolvemos o problema da identificação da estrutura das notícias publicadas
em linha por jornais e agências noticiosas. Este problema requer novas abordagens e
algoritmos que sejam capazes de lidar com o número crescente de publicações em linha
(e que se espera continuam a crescer no futuro). Este facto, juntamente com o elevado
grau de interconexão que as notícias apresentam tornam este problema num problema
interessante e de difícil resolução. A identificação da estrutura do sistema de notícias foi
conseguido quer através da utilização de métodos descritivos que expõem a dimensão das
relações existentes entre as diferentes notícias, quer através de algoritmos de agrupamento
das mesmas em tópicos. Para atingir este objetivo foi necessário proceder a ao estudo deste
sistema complexo sob diferentes perspectivas e abordagens.
Após uma fase preparatória do corpo de dados, onde foram recolhidos diversos jornais
publicados online optou-se por dois jornais em particular: O Público e o The Guardian.
A escolha de jornais em línguas diferentes deve-se à vontade de encontrar estratégias de
análise que sejam independentes do conhecimento prévio que se tem sobre estes sistemas.
Numa primeira análise é empregada uma abordagem baseada em redes adaptativas
e teoria de informação (nomeadamente variação de informação) para identificar tópicos
noticiosos que são publicados no jornal português Público.
Numa segunda abordagem analisamos a estrutura das notícias publicadas pelo jornal
Britânico The Guardian através da construção de séries temporais de notícias. Estas foram
seguidamente agrupadas através de um processo de k-means. Para além disso desenvolveuse
um algoritmo que permite filtrar de forma não supervisionada notícias irrelevantes que
apresentam baixa conectividade às restantes notícias através da utilização de Q-analysis
seguida de um processo de clustering. Presentemente este método utiliza otimização de modularidade, mas a técnica é suficientemente geral para que outras abordagens híbridas
possam ser utilizadas sem perda de generalidade do método.
Desenvolveu-se ainda um novo algoritmo baseado em sistemas de colónias de formigas
para solução do problema do caixeiro viajante que consistentemente apresenta resultados
melhores que os tradicionais bancos de testes. Este algoritmo foi aplicado na construção
de caminhos Hamiltonianos das notícias publicadas utilizando a excentricidade obtida a
partir da conectividade do sistema estudado como medida da distância entre notícias. Esta
abordagem permitiu construir um sistema de navegação entre as notícias publicadas que é
dependente da conectividade observada na estrutura de notícias encontrada.
Os resultados apresentados neste trabalho mostram a importância de analisar sistemas
complexos na sua multitude de relações e conectividades que não são estáticas e que
influenciam a forma como tradicionalmente se olha para sistema multi-dimensionais.
Mostra-se que a inclusão desta dimensões extra produzem melhores resultados na resolução
do problema de identificar a estrutura subjacente a este problema da publicação de notícias em linha.
en
In this thesis a solution for the problem of identifying the structure of news published
by online newspapers is presented. This problem requires new approaches and algorithms
that are capable of dealing with the massive number of online publications in existence
(and that will grow in the future). The fact that news documents present a high degree of
interconnection makes this an interesting and hard problem to solve. The identification
of the structure of the news is accomplished both by descriptive methods that expose the
dimensionality of the relations between different news, and by clustering the news into
topic groups. To achieve this analysis this integrated whole was studied using different
perspectives and approaches.
In the identification of news clusters and structure, and after a preparatory data collection
phase, where several online newspapers from different parts of the globe were
collected, two newspapers were chosen in particular: the Portuguese daily newspaper
Público and the British newspaper The Guardian.
In the first case, it was shown how information theory (namely variation of information)
combined with adaptive networks was able to identify topic clusters in the news published
by the Portuguese online newspaper Público.
In the second case, the structure of news published by the British newspaper The
Guardian is revealed through the construction of time series of news clustered by a kmeans
process. After this approach an unsupervised algorithm, that filters out irrelevant
news published online by taking into consideration the connectivity of the news labels
entered by the journalists, was developed. This novel hybrid technique is based on Qanalysis
for the construction of the filtered network followed by a clustering technique to
identify the topical clusters. Presently this work uses a modularity optimisation clustering technique but this step is general enough that other hybrid approaches can be used without
losing generality.
A novel second order swarm intelligence algorithm based on Ant Colony Systems
was developed for the travelling salesman problem that is consistently better than the
traditional benchmarks. This algorithm is used to construct Hamiltonian paths over the
news published using the eccentricity of the different documents as a measure of distance.
This approach allows for an easy navigation between published stories that is dependent
on the connectivity of the underlying structure.
The results presented in this work show the importance of taking topic detection in
large corpora as a multitude of relations and connectivities that are not in a static state.
They also influence the way of looking at multi-dimensional ensembles, by showing that
the inclusion of the high dimension connectivities gives better results to solving a particular
problem as was the case in the clustering problem of the news published online.