Teses e dissertações

Mestrado
Informática e Gestão
Título

A text-mining based model to detect unethical biases in online reviews: a case-study of Amazon.com

Autor
Costa, Ana Rebello de Andrade da
Resumo
pt
O rápido crescimento das redes sociais nas últimas décadas levaram o comércio electrónico a uma nova era de co-criação de valor entre o vendedor e o consumidor. Uma vez que não há contacto com o produto, os clientes têm de se basear na descrição do vendedor, mesmo sabendo que por vezes tal descrição pode ser tendenciosa e não totalmente verdadeira. Deste modo, surgiu um sistema de reviews com o propósito de disponibilizar um meio de informação de maior confiança, uma vez que se trata de partilha de informação entre clientes e por isso mais imparcial. No entanto, quando os vendedores se aperceberam da importância das "reviews" e o seu impacto direto nas vendas, surgiu a necessidade de controlar este fator chave. Uma das formas de o fazer foi através da oferta de determinados produtos em troca de "reviews" honestas. Contudo, à luz dos resultados de alguns estudos, foi demonstrado que estas "reviews" "honestas" são tendenciosas e enviesam a classificação geral do produto. O objetivo deste estudo foi o de encontrar padrões na forma como estas "reviews" incentivadas são escritas e criar um modelo para prever se uma determinada review seria enviesada. Para esta análise, além da análise de sentimentos realizada sobre os dados, outras características foram tidas em conta, tal como a classificação geral, a taxa de "helpfulness", o tamanho da "review" e a hora a que foi escrita. Os modelos gerados mostraram que as características mais importantes na previsão de parcialidade numa "review" são o tamanho e a taxa de utilidade e como característica sentimental mais relevante a pontuação geral da "review", calculada através do algoritmo VADER.
en
The rapid growth of social media in the last decades led e-commerce into a new era of value co-creation between the seller and the consumer. Since there is no contact with the product, people have to rely on the description of the seller, knowing that sometimes it may be biased and not entirely truth. Therefore, reviewing systems emerged in order to provide more trustworthy sources of information, since customer opinions may be less biased. The problem was, once sellers realized the importance of reviews and their direct impact on sales, the need to control this key factor arose. One of the methods developed was to offer customers a certain product in exchange for an honest review. However, in the light of the results of some studies, these "honest" reviews were proved to be biased and skew the overall rating of the product. The purpose of this work is to find patterns in these incentivized reviews and create a model that may predict whether a new review is biased or not. To study this subject, besides the sentiment analysis performed on the data, some other characteristics were taken into account, such as the overall rating, helpfulness rate, review length and the timestamp when the review was written. Results show that some of the most significant characteristics when predicting an incentivized review are the length of a review, its helpfulness rate and the overall polarity score, calculated through VADER algorithm, as the most important sentiment-related factor.

Data

28-fev-2018

Palavras-chave

Comércio eletrónico
Criação de valor
Text mining
Satisfação do cliente
Sentiment analysis
Online reviews
VADER

Acesso

Acesso livre

Ver no repositório  
Voltar ao topo