Título
Three essays on the valuation of American-style options
Autor
Ruas, João Pedro Bento
Resumo
pt
Esta tese aborda a avaliac¸ ˜ao de opc¸ ˜oes de estilo Americano, com e sem barreira, em
tr ˆes artigos distintos:
A. Pricing and Static Hedging of American-style Options under the Jump to Default
Extended CEV Model
Este artigo avalia (e faz o hedging) de opc¸ ˜oes de estilo Americano atrav´es do static
hedge approach (SHP) proposto por Chung and Shih (2009) e estende a literatura
em duas direc¸ ˜oes. Primeiramente, o SHP ´e adaptado ao modelo jump to default
extended CEV (JDCEV) de Carr and Linetsky (2006), e s˜ao avaliadas opc¸ ˜oes de
estilo Americano sem barreira sobre activos com possibilidade de fal ˆ encia. A robustez
e a efici ˆencia das soluc¸ ˜oes de avaliac¸ ˜ao propostas, s˜ao comparadas com
o optimal stopping approach de Nunes (2009), no ˆambito dos modelos JDCEV e
constant elasticity of variance (CEV) de Cox (1975), considerando diferentes valores
para o parˆametro de elasticidade. Em segundo lugar, tanto o SHP como o
optimal stopping approach s˜ao estendidos para a avaliac¸ ˜ao de opc¸ ˜oes de estilo
Americano com um cap.
B. General Put-Call Symmetry for American-style Barrier Options
Este artigo deriva relac¸ ˜oes de simetria put-call para opc¸ ˜oes de estilo Americano
com uma e duas barreiras. Usando a t ´ecnica de mudanc¸a de numer´ ario proposta por Geman et al. (1995) e Schroder (1999) estas simetrias s˜ao derivadas sem
impor restric¸ ˜oes pr ´evias sobre o processo estoc´ astico seguido pelo activo subjacente.
Os resultados s˜ao testados atrav´es de uma extensa an´ alise num´ erica sob
o modelo constant elasticity of variance.
C. In-Out Parity Relations and Early Exercise Boundaries for American-style Barrier
Options
Este artigo deriva novas relac¸ ˜oes de paridade in-out para puts de estilo Americano
com uma barreira inferior e calls de estilo Americano com uma barreira superior.
Mais importante, ´e proposta uma nova representac¸ ˜ao da fronteira de exerc´ıcio
antecipado para opc¸ ˜oes de estilo Americano com dupla barreira knock-out, em
termos da fronteira de exerc´ıcio ´optimo de uma opc¸ ˜ao de estilo Americano com
uma s´o barreira. Assim sendo, o m´etodo static hedge portfolio ´e estendido para
a avaliac¸ ˜ao de opc¸ ˜oes de estilo Americano com dupla barreira knock-out. Os resultados
s˜ao testados atrav´es de uma extensa an´ alise num´ erica sob os modelos
geometric Brownian motion e constant elasticity of variance.
en
This thesis addresses the valuation of American-style standard and barrier options in
three separate and self-contained papers:
A. Pricing and Static Hedging of American-style Options under the Jump to Default
Extended CEV Model
This paper prices (and hedges) American-style options through the static hedge
approach (SHP) proposed by Chung and Shih (2009) and extends the literature in
two directions. First, the SHP approach is adapted to the jump to default extended
CEV (JDCEV) model of Carr and Linetsky (2006), and plain-vanilla American-style
options on defaultable equity are priced. The robustness and efficiency of the proposed
pricing solutions are compared with the optimal stopping approach offered
by Nunes (2009), under both the JDCEV framework and the nested constant elasticity
of variance (CEV) model of Cox (1975), using different elasticity parameter
values. Second, both the SHP and the optimal stopping approaches are extended
to the valuation of American-style capped options.
B. General Put-Call Symmetry for American-style Barrier Options
This paper derives put-call symmetries for American-style single and double barrier
options. Using the change of numeraire technique proposed by Geman et al.
(1995) and Schroder (1999) we are able to derive these symmetries without imposing previous assumptions on the process followed by the underlying asset. Our
results are tested through an extensive numerical analysis run under the constant
elasticity of variance model.
C. In-Out Parity Relations and Early Exercise Boundaries for American-style Barrier
Options
This paper derives new in-out parity relations for American-style puts with a down
barrier and American-style calls with an up barrier. More importantly, we also propose
a novel representation for the early exercise boundary of American-style double
knock-out options in terms of the simpler optimal stopping boundary for a nested
single barrier American-style option. Therefore, we are able to extend the static
hedge portfolio approach to the valuation of American-style double barrier knockout
options. Our results are tested through an extensive numerical analysis run
under the geometric Brownian motion (GBM) and the constant elasticity of variance
models.