Título
Complex networks analysis in team sports performance: multilevel hypernetworks approach to soccer matches
Autor
Ramos, João Paulo Duarte
Resumo
pt
Os humanos necessitam interagir socialmente com os outros e com o
envolvimento. Essas interações estão na origem de sistemas complexos cujo
entendimento não é captado através de ferramentas ingénuas e casuísticas. Uma
forma será procurar mecanismos e padrões de comportamento nas atividades.
Nesta tese, o foco centra-se na utilização de ferramentas dos sistemas complexos,
particularmente no contributo da teoria e ferramentas de redes complexas, na
Análise do Desempenho Desportivo baseado nas interações dos jogadores de
equipas desportivas. Começámos por explorar a Teoria das Redes, especificamente
a Análise de Redes Sociais (ARS) no Voleibol (estudo experimental) e depois no
futebol (Campeonato do Mundo de 2014). As aplicações da ARS mostraram-se
limitadas (por exemplo, na dinâmica das redes em interações n-árias) o que nos
trouxe a outras teorias e ferramentas das redes complexas. No capítulo do estadoda-
arte e artigo de revisão publicado, abordámos as vantagens de utilização de
outras teorias e ferramentas, como a análise Multinível e Teoria das Híperredes.
No artigo de métodos, apresentámos a Abordagem de Híperredes Multinível na
Análise do Desempenho em jogos de futebol (Premier League Inglesa 2010-11)
considerando as interações de cooperação e competição nos conjuntos de
jogadores, em diferentes níveis de análise. Numa conferência internacional,
apresentámos os formalismos matemáticos que podem expressar as relações dos
jogadores e as distribuições estatísticas da ocorrência dos conjuntos e a sua ordem,
identificando regularidades de distribuições estatísticas de power law e design
(encontrado nalgumas exceções estatísticas específicas), promovidas pelos
treinadores na preparação dos jogos e constrangidas pelas regras do futebol.
en
Humans need to interact socially with others and the environment. These interactions
lead to complex systems that elude naïve and casuistic tools for understand these
explanations. One way is to search for mechanisms and patterns of behavior in our
activities. In this thesis, we focused on players’ interactions in team sports performance
and how using complex systems tools, notably complex networks theory and tools, can
contribute to Performance Analysis. We began by exploring Network Theory,
specifically Social Network Analysis (SNA), first applied to Volleyball (experimental
study) and then on soccer (2014 World Cup). The achievements with SNA proved
limited in relevant scenarios (e.g., dynamics of networks on n-ary interactions) and we
moved to other theories and tools from complex networks in order to tap into the
dynamics on/off networks. In our state-of-the-art and review paper we took an
important step to move from SNA to Complex Networks Analysis theories and tools,
such as Hypernetworks Theory and their structural Multilevel analysis. The method
paper explored the Multilevel Hypernetworks Approach to Performance Analysis in
soccer matches (English Premier League 2010-11) considering n-ary cooperation and
competition interactions between sets of players in different levels of analysis. We
presented at an international conference the mathematical formalisms that can express
the players’ relationships and the statistical distributions of the occurrence of the sets
and their ranks, identifying power law statistical distributions regularities and design
(found in some particular exceptions), influenced by coaches’ pre-match arrangement
and soccer rules.